Please write your name and student number on each sheet; answer either in Dutch or English.

Question 1

a. The function $f(t)$ is defined by $f(t)=e^{-t / \tau}$ for $t \geq 0$ and $f(t)=0$ for $t<0$, and the function $g(t)$ is defined by $g(t)=e^{t / \tau}$ for $t \leq 0$ and $g(t)=0$ for $t>0$. Calculate the Fourier transforms of $f(t)$ and $g(t)$.
b. Prove that for any function $\varphi(t)$ the relationship $\mathcal{F}\{\varphi(-t)\}=\left[\mathcal{F}\left\{\varphi^{*}(t)\right\}\right]^{*}$ holds, where \mathcal{F} denotes the Fourier transform, and * the complex conjugate. Show that your result at a is consistent with this relationship.
c. With $f * g$ denoting the convolution of f and g, show that for the specific functions f and g defined in a $f * g=\frac{\tau}{2}(f+g)$, by first showing that $\mathcal{F}\{f\} \mathcal{F}\{g\}=\frac{\tau}{2}[\mathcal{F}\{f\}+\mathcal{F}\{g\}]$.
d. Show that $f * g=\frac{\tau}{2}(f+g)$ by evaluating $f * g$ directly in the time domain, using the definition of convolution.

Question 2

A signal $g(t)$ is defined as the product of three cosines: $g(t)=\cos \left(2 \pi f_{1} t\right) \cos \left(2 \pi f_{2} t\right) \cos \left(2 \pi f_{3} t\right)$, with $f_{1}=100 \mathrm{~Hz}, f_{2}=200 \mathrm{~Hz}$, and $f_{3}=250 \mathrm{~Hz}$.
a. Which frequency components are present in $g(t)$? Sketch the positions and amplitudes of all frequency components on the frequency axis $(-\infty<f<\infty)$.
Hint: you may want to use $\left.\cos \alpha \cos \beta=\frac{1}{2}[\cos (\alpha-\beta)+\cos (\alpha+\beta)]\right)$.
b. Determine the minimal sampling frequency needed to be able to fully reconstruct $g(t)$ from the sampled values. Explain, using clear diagrams in the frequency domain, why this sampling frequency is sufficient. c. Suppose you sample $g(t)$ at a sampling frequency $f_{s}=650$ samples $/ \mathrm{s}$, and you subsequently use the sampled values to make a reconstruction $g_{\mathrm{r}}(t)$ of $g(t)$. Which frequencies are present in $g_{\mathrm{r}}(t)$? Explain your answer with a diagram in the frequency domain.

Question 3

a. X is a random variable with probability density function (pdf) $p_{X}(x)$. Give the cumulative distribution function (cdf) of X, denoted by $F_{X}(x)$, in terms of $p_{X}(x)$. Also give $p_{X}(x)$ in terms of $F_{X}(x)$. b. A random variable Y is defined by a monotonically increasing function f of a random variable X, i.e., $y=f(x)$. Derive that $p_{Y}(y)=p_{X}(x) \frac{d x}{d y}$. (Remark: this is a special case of $\left.p_{Y}(y)=p_{X}(x)\left|\frac{d x}{d y}\right|\right)$.
c. X is a random variable with pdf $p_{X}(x)=\frac{2}{\pi}$ for $0 \leq x \leq \frac{\pi}{2}$ and $p_{X}(x)=0$ elsewhere. Y is a random variable given by $y=\sin (x)$, and Z a random variable given by $z=\cos (x)$. Calculate and sketch $p_{Y}(y)$ and $p_{Z}(z)$.
d. Sketch the joint probability density function of Y and $Z, p_{Y, Z}(y, z)$. Use the definition of independence to argue that Y and Z are not independent random variables.

NB See other side for Question 4

Question 4

The random signal $s(t)$ is the sum of two statistically independent, stationary random signals $x(t)$ and $y(t)$, where $x(t)$ has an autocorrelation function $R_{x}(\tau)=\exp (-|\tau|)$, and $y(t)$ is zero mean white noise with a power spectral density $\mathcal{P}_{y}(f)=0.1$. This signal $s(t)=x(t)+y(t)$ is passed through a linear filter with impulse response $h(t)$

$$
\begin{array}{ll}
h(t)=\frac{1}{T} & \text { for } 0 \leq t \leq T \\
h(t)=0 & \text { for } t<0 \text { and } t>T
\end{array}
$$

a. Calculate the power spectral density of signal $x(t)$.
b. Calculate the autocorrelation function and power spectral density of $s(t)$.
c. Find the power spectral density of the signal at the output of the linear filter.
d. Calculate the Wiener filter for optimally retrieving $x(t)$ from $s(t)$. If you were forced to use $h(t)$ as an approximation to this Wiener filter, which value would you (approximately) choose for T ?

